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Abstract. We present 3 deuiled yldgsis for the L m g m  d)nmics of a sphencd spin-glass 
model (the sphcricd Shemngton-Kirkpitick model). The efiecls of initial candiuans on the 
ultimile d)nmicaI beh3wour 31e closely examined. In addition, the effects of lempemlurc 
variations in the model ue studied Somzu,hnl surp"smg1y. this simple model nprurec some of 
the effects seen in Iaboniory spin-glassis. 

1. Introduction 

Spin-glasses, l i e  many other complex systems [l], are essentially out of equilibrium on 
experimental scales. Below the critical temperature experiments show 'aging effects', or 
the dependence of the response of the samples on their history since the temperature quench 
[2,31. The simplest way to observe agingphenomena is through the zero-field cooling (ZFC) 
experiment in which the sample is cooled in zero field to a sub-critical temperature at time to; 
after a waiting time tw a small constant magnetic field is applied and subsequently the time 
dependence of the magnetization is recorded. Its 'mirror' counterpart consists of cooling 
the sample at the quenching time to = 0 in the presence of a small constant magnetic field, 
keeping the sample in the field up to the waiting time tw and then measuring the decay of 
the thermoremanent magnetization (TRM). In both cases, the 'older' the systems (the longer 
the waiting times) the slower their relaxations: the systems age [2,3]. 

Other, mow sophisticated, experiments include variations in the temperature, mainly 
temperature jumps and temperature cyclings below the critical temperature T, during the 
waiting time. In the temperature jump experiments [P6]  the samples are kept at a constant 
temperature T during a waiting interval [0, tj]; At tj the temperature is changed to T+ ST. 
The sample is still kept at this constant temperature during the time interval [tj, tw]. Finally, 
at tw the magnetic field is switched on or off and the ZFC or TRM decays are measured, 
respectively, at the final temperature T + ST. In the simplest setting [4] tj = tw. 

In the temperature cycling experiments, a temperature cycle is performed during the 
total waiting time; T ( t )  is T for times between to and t,,, T + ST for times between twl 

and fwz and again T for all subsequent times. The magnetic field is switched at tw > r,, 
according to the ZFC or TRM settings [5,7]. 

In all these experiments, the notion is to find an effective waiting time corresponding 
to a system that has undergone temperature variations. This effective waiting time can be 
estimated by comparing the decays of quantities such as TRM with the same system kept 
at constant measuring temperature. Whether finding the effective waiting time is possible 
depends on the precise protocol of the experiment [3]. 

0305-447~5/154213+22$19.50 @ 1995 IOP Publishing Ltd 4213 
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The ZFC and TRM experiments [4,7] with temperature jumps at t j  = tw unequivocably 
show that waiting at a higher temperature (ST e 0) disfavours aging and makes the materials 
respond as younger ones while waiting at a lower temperature (ST > 0) favours aging and 
makes the materials respond as older ones [4] in comparison with a system kept at a constant 
measurement temperature T + 6T. The response depends on the magnitude and duration 
of the heat pulses. The position of the maximum of the logarithmic derivative of the 
magnetization decay is sometimes associated with an effective age of the system. After 
temperature jumps one observes a displacement of this maximum towards smaller (bigger) 
times [4] when 6T > 0 (ST c 0). 

Grosso modo this is also observed by comparing the full TRM decays with and without 
jumps [5,6]. However, a more detailed analysis of the TRM decay curves after temperature 
variations shows more subtle effects and provokes controversy since there is no agreement 
on its dependence on the sign of the temperature variation. The Uppsala group [4,7] claims 
that their measurements of the rate of change in the decay of the magnetization are symmetric 
with respect to the sign of ST. On the other hand, the Saclay-UCLA group studies the decay 
of the magnetization and claims that it has an explicit dependence on the sign of 6 T ,  i.e. that 
the response is asymmetric [.5,6]. In [5] and [6] it is concluded that a short, as compared to 
the initial waiting time, heat pulse (ST 0) partially re-initializes aging while a negative 
temperature cycling (6T < 0) freezes the system into the state reached during the initial 
aging process. In other words, to lower the temperature is said to be equivalent to a, maybe 
partial, new quench. Instead, raising the temperature does not produce such an effect (see 
[3] for a more detailed discussion of this discrepancy). 

The out of equilibrium dynamics of the standard finite dimensional model for spin- 
glasses, i.e. the three-dimensional Edwards-Anderson model (3D-EA), has been extensively 
studied numerically [8-111. Simulations for the TRM decay and for the two-time 
autocorrelation function decay at constant temperature [S, 91 and after temperature changes 
during the waiting time [lo, 111 have been performed. In addition, simulations of the 
dynamics of the hypercubic spin-glass cell-a mean-field model for large dimensionalities- 
with a very schematic discussion of the effect of temperature shifts at t, have also been 
carried out [12]. 

Numerically, there is again agreement on the influence of the magnitude and duration of 
the heat pulses on the response of the 3D-EA, but there are different opinions as regards the 
symmetry or asymmetry in the response. In [lo] it is claimed that the numerical results for 
the rate of change of the magnetization [8] are symmetric. Conversely, in I l l ]  numerical 
support for asymmetries in the response is given. 

The aging effects and, in particular, the effects of temperature variations have been 
interpreted with various phenomenological models. 

The Uppsala group interpreted their experimental results along the lines of droplet 
models [13-151, i.e. in terms of time-dependent domain growth with the added assumption 
of chaoticity. These models predict a symmetric response to temperature changes. The 
Saclay-UCLA group interpreted their asymmetric observations with a ‘hierarchical’ model 
[SI inspired by the replica solution of mean-field spin-glass models [16]. In this model it is 
assumed that the system relaxes in a rough energy landscape with a hierarchical organization 
of many metastable states. 

A semiphenomenological approach to spin-glass dynamics based on the Parisi solution 
for the Sherrington-Kirkpatrick model has been proposed [17]. One constructs a Markov 
chain on a hierarchical tree with jump rates which are quenched random variables chosen 
from a LCvy distribution; the index of the distribution depending on the level to which the 
jump takes place. One associates an overlap between states depending on the ultrametric 
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distance between them and then computes the correlation function within this framework. 
This model clearly exhibits aging phenomena and a simple two-level tree (corresponding to 
two-step replica symmetry breaking) may be used to account for many of the experimental 
observations. Temperature changes are implemented by a reorganization of the tree structure 
via changes in the Mvy law indices and overlap variables. 

Only recently has attention been paid to the analysis of the off-equilibrium dynamics 
of mean-field spin-glass models. The long-time analytic solution of the dynamic equations 
of the p-spin spherical model [18], for p 2 3, and for the Sherrington-Kirkpatrick model 
[19], have been worked out. In addition a detailed numerical analysis of the dynamical 
equations for a particle moving in an infinite dimensional random potential with long- 
range correlations has been carried out [ZO] (see also [ZI]). In these studies the dynamical 
equations are those associated with the relaxation of the system at constant temperature 
starting from a given initial condition. The effects of temperature variations have not yet 
been studied with mean-field spin-glass models. 

In this paper we shall study the dynamics of the spherical Sherrington-Kirkpatrick (SK) 
model or the p = 2 spherical spin-glass model [22,23] for general initial conditions. The 
model is simple enough to be solved exactly statically and dynamically and allows us to 
examine in a simple analytical way some of the experimental scenarios. 

From the static point of view the model is extremely simple. Its energy has only two 
minima, corresponding to the configurations with maximum (minimum) projection on the 
direction of the eigenvector associated with the maximum eigenvalue of the (Gaussian) 
interaction matrix. Within the replica formalism the model is solved exactly with a replica 
symmetric ansatz [22]; a result that would suggest its triviality from the dynamical point 
of view. Despite this, the model’s dynamics is extremely interesting. For almost any 
initial condition it is out of equilibrium, and the evolution does not lead it to equilibrium. 
The model exhibits aging effects in the two-time autocorrelation function, i.e. even 
asymptotically it depends explicitly on the waiting time. Depending on the initial conditions, 
rather than the exponential types of decay in the energy-density, correlation functions, etc 
one observes power-law decays. This is because the characteriztic equilibriation time of the 
system (for such initial conditions) is infinite. Such an exponential decay with rate given 
by the inverse of this equilibriation time therefore cannot appear; the only other time scale 
that can appear in correlation functions is the waiting time. 

In contIast with some previous studies of this and related models [XI we make no 
explicit assumptions about equilibrium behaviour for the system (see, however, [231). 
Moreover, we show  that,^ in general, the system does not reach an equilibrium. The 
equilibrium assumption automatically kills all the interesting aging effects in the models. 

The aim of this paper is two-fold. On the one hand we probe some of the assumptions 
used to obtain analytical results for the long-time dynamics of more complicated mean-field 
spin-glass models [18, 191; namely, the weak-ergodicity breaking hypothesis [17]. On the 
other hand, we study the effects on this simple model of temperature jumps and temperature 
cyclings during the waiting time and we compare these analytical results with the associated 
experimental and numerical measurements. We do this via analysis of the decay of quantities 
such as the energy density and the autocorrelation function. 

This being the ‘simplest’ mean-field spin-glass model, it is not expected to reproduce the 
experimental behaviour in every detail. Surprisingly enough, some of the strange features 
of real spin-glass behaviour are captured by it. 

The paper is organized as follows. In section 2 we present the model and describe the 
quantities of interest. In section 3 we present the results for constant temperature T ( t )  = T .  
In section 4 we study the effects of temperature variations on the asymptotic decays. Finally, 
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in section 5 we present our conclusions. 
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2. The model 

The p = 2 spherical model [22,23] is defined by the Hamiltonian 

where si, i = 1, . . . , N are the spherical spin variables constrained such that EL, si” = N .  
The couplings between the spins are given by the quenched random variables J;,. 

To study the dynamical evolution it is convenient to diagonalize the coupling matrix 
Jij  and to work with the time-dependent projections of the spin configuration ~ ( t )  = {s i ( t ) ]  
onto the J-eigenvectors p: SI.@) = p .s[ t ) .  

The dynamics for the model is defined via the usual Langevin equation, which when 
projected onto the eigenvectors p becomes 

(2.2) 

p is the eigenvalue associated with the eigenvector p, h,[f) represents an extemal magnetic 
field, z ( t )  is a Lagrange multiplier enforcing the spherical constraint and is the thermal 
noise with zero mean and correlation given by 

(2.3) 

T(r )  is the [possibly timedependent) temperature. Hereafter we shall use (.) to represent 
the average over the thermal noise. 

-- - (p - Z(t ) )S , ( t )  + hp(t) + t,(t) 
at 

(t&(t)t(t’)) = 2T( t )4J( t  - 0. 

The general solution to equation (2.2) is 

s,(O = +(to) e x p M  - t o ) )  exp 

The two-time autocorrelation function is defined as usual: 

where the square bracket indicates averaging over the disorder Ji,. It can be expressed in 
terms of the eigenvalues of J as C(t, t’) = Sdpp(p)(s,(t)s,(t’)), with p ( p )  the eigenvalue 
density. In the absence of an extemal field, using equation (2.4) one obtains 

1 min(f.t’) 
dt” T(t”)r[f”)((exp(p(t + f’ - 2t”)))) 

where ((.)) stands for Sdpp(p ) .  and 
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may be computed self-consistently from the spherical constraint C ( t ,  t )  = 1, as the solution 
to the following Volterra equation of the second type: 

r(t) = (((sw(to))2exp{2p(t - tdl)) +2/ dt"T(tf')r(t'')((exp{2W(t - t")])). (2.7) 

This immediately implies r(t0) = 1. In what follows we shall take the initial (quench) time 
to be zero: to = 0. 

In this paper we shall analyse the case in which J is a symmetric matrix with elements 
which are independently distributed Gaussian random variables with zero mean and variance 
proportional to 1/N; this choice gives the model a well defined thermodynamic limit. The 
probability distribution function for the eigenvalues is then given by the Wigner semicircIe 
law [25]: 

I 

kl 

However, as far as possible, we shall keep a general distribution p(p) .  This will ultimately 
be useful in studying the effects of different, e.g. wide [26], distributions [27]. 

We study the long-time dynamics hy calculating the long-time behaviour of the following 
characteristics. 

(i) The time dependence of the energy density and of its relaxation rate. In the absence 
of an external magnetic field one can show that the energy density is given by 

(2.9) 
1 
2 

E(1) = - (T(t)  - z(t))  = 

and its relaxation rate is given by 

(ii) The (averaged over the noise) staggered magnetization 

(2.10) 

(2.11) 

(iii) The two-time correlation function (2.5). We shall be interested in the aging 
behaviour contained in C ( f ,  t') for t and f' large. Choosing t > t', a useful expression 
for C is the following: 

4" C(t, f') = 

We shall also study the decay from the initial conditions characterized by C(t, 0). 
(iv) The equal-time overlap between two real replicas s, and U, that evolve with the 

same thermal noise up to a 'waiting time' &, after which they evolve in two independent 
realizations of the thermal noise, say ( ( t  + tw) and g(t + tw): 

Qtf + fw f + tw) E (((sw(t + tw)o@(t + fw)) t .e) )  

(2.13) 

The realization of disorder is the same, i.e. the interaction matrix Jij is the same for both 
replicas. 
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(v) The response function at time t to the perturbation by a small magnetic field applied 
at time t‘ 

(2.14) 

h,(t) = p, . h(t). Taking the variation~of (sp(t))  with respect to h,(t’) from equation (2.4) 
one obtains 

The presence of a field modifies the function r. However, explicitly computing 
the functional derivative W,(t) /Hz, ( t ’ )  from the r h  defining equation and taking the 
thermodynamic limit, one gets 8rh(t)/8hp(tf) lh=O = 0. Hence, 

(2.16) 

the subindex 0 indicating the absence of an external field. 

given by 
The decay of the TRM (assuming a suitably well behaved response function) is then 

m,(t) = h dt”G(t, t”). (2.17) 

All these functions contain information about the natllre of the dynamics and about 
the ‘geometry’ of the energy landscape of the model. A first analysis of the dynamical 
properties of this model has been carried out in [23]. 

3. Constant temperature 

In this section we shall analyse the evolution of the system at constant temperature. For the 
initial conditions st(0) at the quenching time to = 0 we choose two configurations that ace 
representative of the different possible behaviours of the system: 

6+ 

(i) ‘uniform’ initial condition. 

sp(0) = 1 Vp, + non-equilibrium dynamics (3.1) 

S,(O) = &,%6 =$ 

(ii) ‘staggered‘ initial condition. 

non-equilibrium dynamics for a # 2 
equilibrium dynamics for a = 2. [ 

The ‘uniform’ initial condition that has a constant and equal to one projection onto each 
eigenvector of the interaction matrix J is a random initial condition when written in the 
original basis. This then corresponds to the ‘realistic experimental’ initial condition from 
which the samples evolve after the rapid quench at to. 

The strange form of the initial conditions in the staggered case follow from the 
requirement that the initial conditions satisfy the spherical constmint. In order to have 
an equilibrium dynamics, the initial condition must have a macroscopic condensation onto 
the maximum eigenvalue (p, = 2 for p(p) given by equation (2.8)). We shall show that 
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only this particular initial condition leads the system to equilibrium, by studying the initial 
conditions needed to have a time-homogeneous relaxation of the correlation and response 
functions, two typical features of the equilibrium dynamics. 

The function r(t) can be obtained for general initial conditions using Laplace &ansfom 
techniques to solve equation (2.7). We derive these results in appendix A. 

3.1. Uniform initial condition 

The function r(r), for all times t and T c T, = 1, is given by 

For large times the energy density is 
1 3 E ( t )  - -T - 1 + - 
2 8t 

(3.2) 

(3.3) 

and hence asymptotically it tends to the equilibrium value [22] Ees = 4T - 1 with a 
power-law decay. 

The staggered magnetization given by equation (2.1 1) behaves, asymptotically, as 

(s,(t)) - (4?r)1/4qE~(2t)314e(”-Z)f (3.4) 
T e Tc and qw = (1 - T )  is the Edwards-Anderson order parameter [22]. If p # 2, it 
decays exponentially with time. Instead, if p = 2, the staggered magnetization associated 
with the maximum eigenvalue grows with time as a power law: (sz(t)) - t3l4. The system 
condenses, on average, onto the maximum eigenvalue. 

The rate of decay from the initial conditions is characterized by 

C ( t ,  0) - ( 3 / 4 q E A t - 3 / 4  (3.5) 

i.e. a power-law decay of the correlations between the system and its initial conditions-this 
is typical of non-equilibrium dynamics. 

The correlation function (2.5) is given by 

and asymptotically (large time t’) it behaves as 
A314 

(1 + h ) 3 / 2  
[1-Tintl(2t(l-h),2t(l+h))I  (3.7) C ( t ,  t’) - 2 d 5  

where h = t’/t and 

It is clear from equation (3.7) that even at zero temperature the correlation function shows 
an ‘aging’ behaviour: C ( t ,  t’) = C(h) and hence C( t  + t,, t,) = ?(t/t,). It can also be 
proven that aC(t,  t’)/at c 0 and X ( t ,  t’)/at‘ > 0, for all times t ,  t’ such that t > f’. These 
are two of the ‘weak-ergodicity’ breaking properties [17, le]. 

For large t there are three t’ regimes: 
(i) Finite t’ or h = t ‘ / t  -+ 0 

q t ,  f’) - f(T, t ’ ) t -3 /4  (3.9) 
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Having already taken the limit f -+ 03 one can now consider the limit f’ + 03; thus 

(3.11) 

The correlation function decays to zero with a power law (the exponent of which is 
independent of the temperature as in the case of domain growth). Hence, given any finite 
time t’ there exists a big enough subsequent time f such that the correlation function has 
decayed to zero. 

(ii) Large t’, ( f  - f ’ ) / t  < 1, A = 1 - ( ( f  - f ’ ) / t )  -+ 1; i.e. f and f’ are relatively close 
to each other: 

(3.12) 

Up to zeroth order in (t - t’)/t, the correlation function satisfies time-translation invariance 
(TTI). This is the so-called FDT (fluctuation dissipation theorem) regime [18]. If t = f ‘ ,  
,I = I and C ( f ,  f )  = 1, as expected from the spherical constraint. If we take the limit 
( f  - t’) + w-determining the end of the FDT-SCak-We obtain 

(3.13) 

11 (0) 2 ( H ‘ )  
dw e-o 1 0 

C ( f ,  t‘)  - C(t - t’) = 1 - T 

c(f - f ’ )  - qEA 

as can be clearly seen in figure 1. 

C 

Figure 1. C(r + t,, t,) against r in a log-log scale. tw = 30, 100,300.1000 (from left IO 
right) at T = 0.3. m ( T  = 0.3) = 0.7. 

This property completes the weak-ergodicity breaking scenario [17,19]. That is to say 
lim C(r + f w ,  f w )  = 0 Vfw finite 
7-03 

lim C(t + f , .  f , )  = qEA Vr  finite. 
lu-m 

The initial rate of decay of the correlation function is 
a q r ,  t’) 

lim - = -T. 
I+: at 

(3.14) 

The usual fluctuation-dissipation theorem is satisfied for this range of times as we shall 
show below. 

(iii) Large f ‘ ,  ( f  - t’)/f finite and h finite, i.e. widely separated times t and f ’ .  If A c 1 
the full equation (3.6) holds. For large f ,  intl(Zf(1 - A),2t(l +A)) is a function of A. 
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Hence, for T < T, = 1 the correlation function depends explicitly on t,. This is the 'aging' 
regime. The rates of decay aC(r, t')/at and aC(f, t')/ar' are proportional to -l/t and l/t, 
respectively, and hence the autocorrelation has a very slow variation. 

In figure 1 we present a plot of C(r  + t,, t,) against r in a log-log scale, for constant 
temperature T = 0.3 and waiting times t, = 30,100,300,1000,3000. The curves are the 
typical aging curves already observed in the Monte Carlo simulations of the 3D-EA model 
[91 and the D-dimensional hypercubic spin-glass cell 1121. r is the time elapsed after the 
'waiting time' tw. The waiting times in these figures are enough to show the asymptotic 
behaviour, the same behaviour is reproduced for longer waiting times. In all the curves two 
clearly different time regimes appear: for times t much smaller than tw the autocorrelation 
has a fast decay from C = 1 to C - ~ B A  = 1 - T = 0.7, while for r > t, it has a slow 
decay from C -  EA to zero. The waiting time acts as the time scale determining the length 
of the plateau in figure 1, i.e. the length of the FDT regime. 

To compute the overlap between two (real) replicas we make them start from the same 
initial condition, the uniform one, and let them evolve in the way described in section 2. 
Then r.? r, and 

If tw = 0 then for large times r ,  equation (3.15) implies 
Q(r, 7) (3.16) 

For a non-zero t ,  the behaviour depends on t,. If tw is large one can show that there are 
two relevant t-regimes: 

if 1 << t << t ,  Q(r + tw, r + t,) - C(r +tw, t,) 
if r >> t, >> 1 Q ( t + t w , t + t w ) - q ~ ~  > C ( t + t w , t w ) .  

Figure 2 shows, in a log-log scale, the Q decay for iw = 0, 10,30,100 at constant 
temperature T = 0.6. One can there see how the r --f cc limit of the curves depends 
on t,. and how it approaches qm for increasing t,. 

.. . . . , , , . , . . . , , , . , , , , , , 

Figure 2. The overlap Q(r +I,, I + f )  against r in a log-log scale at constant temperature 
T = 0.6 for r, = 0. IO, 30,100 (from bottom to top). ym(T = 0.6) = 0.4. 

These results 'go in the same direction as those obtained numerically for the SK model 
[28] and analytically for the O(N) model [27].' The systems escape from themselves faster 
than they do from each other. However, in this model, the asymptotic value of the overlap 
Q at large f,, when t + cu is qm while for the SK model [28], Q ( t  + tw, t + tw) - 0 
when the same limits are considered. For the p = 2 spherical model this implies that there 



4222 

is a long-term drift in the energy landscape which causes the two replicas to follow roughly 
the same route. (One could imagine the replicas moving through channels or through the 
same sets of valleys in the energy landscape.) This demonstrates the relative simplicity of 
the energy landscape in the sense that a more chaotic landscape (e.g. that of the SK model) 
would possess a more complicated set of local free energy minima which allow the replicas 
to become more widely separated asymptotically. 

L F Cugliandolo and D S Dean 

The response function reads 

(3.17) 

For large times t > t', the right-hand side of (2.16) is independent of the temperature and 

Il (4f) Il Q(r - r')) 
G(t,  t') - t 3 I 4 e - " G  t - f' 

One can demonstrate the following properties from this equation: 
(i) If t' is finite the response function decays as the power law G(t ,  t') cx r 3 I 4 .  
(ii) In the FDT scale (t  - t')/t -+ 0, A -+ 1, 

(3.18) 

(3.19) 

i.e. it satisfies time-translation invariance. Furthermore, from equations (3.12) and (3.19) 
one can immediately see that the FDT is also satisfied in this scale: 

ac(t - t') 
at' ' 

TG(t - t') = 

(iii) Finally, in the aging regime, 
2-314 

G(t, t') - t-312, 
(1 - A)3/* 

(3.20) 

(3.21) 

The response function decays as the power law tw3D. This differs from the results obtained 
for the p-spherical model with p > 3, for which G(t ,  t') cx t-'~. It implies that the memory 
of the p = 2 model is too weak and the aging effects in the magnetization are washed away 
quickly. 

The TRM decay for large times I, if the magnetic field has been applied during a finite 
interval 10, t,], behaves as mmM(t) o( r 3 I 4  while if tw = A,f, A, > 0, mm(t) cx t-'I4. 

One should note that many of the quantities calculated in this section depend on the 
initial conditions only via the term q(@) = (~~(0))'. For these quantities - the results would 
be unchanged if one took any random initial conditions such that q(@) = 1, the overbar 
indicating the average over the randomness in the starting configuration (conditional on 
knowing the matrix J ) .  For example the distributions sp(0) = f l  with equal probability 
and ~ ~ ( 0 )  - N(0,  1) (i.e. zero mean Gaussian of unit variance) would have lead to the 
same results for such quantities. In addition the Gaussian initial conditions imply that 
si(0) - N ( 0 ,  1) by the rotational invariance of the Gaussian distribution. 

Finally, let us remark that expressions (2.5) and (2.14) for the correlation and response 
functions solve, without the use of any assumptions, the dynamical mean-field equation of 
the p-spherical model when p is set to 2. 

In the language of [IS] and [I91 the long-time dynamics is described in terms of two 
functions, namely, the function X(C) that modifies the FDT: 

a q t ,  t i )  

at' 
TG(t,  t') = X ( C ( t ,  t'))- (3.22) 
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and the ‘triangular relation’ f that relates any three correlation functions at three long times 

(3.23) 
t > t” > t’. The fixed points of f, f (a .  a )  = a separate different correlation scales. 

For the p = 2 model we know the exact solution for all times and we can then compare 
the long-time part of it with the results obtained in [18] with the help of these assumptions. 
In fact, at large times, the exact solution implies the existence of two correlation scales. 
In the first one the correlation decays from 1 to qEA,  X ( C )  = 1 and m and FDT are 
satisfied. This is the FDT scale. In the second one, the correlation decays from @A to 0, 
X ( C )  - t-’/’ + 0 and Tn and the FDT are violated. The result X = 0 agrees with the 
predicted value X = ( p  - 2)(1 - q) /q  of [18]. 

The two 
correlation scales are separated by the value C = qEA,  hence, the three fixed points of 
f are 0,qm and 1. In general, just’from its definition, between any two fixed points f 
must have the form 

C(r,  t’) = f(C(t, t”), C(t”, t’)) 

As regards the triangular relation the situation is slightly more subtle. 

c(t, t’) = J-’(J(c(t, t”))J(c(t”, t ’ ) ) )  (3.24) 

with J a monotonic function to be determined by the model. There is going to be a function 
J for each correlation scale. 

In the FDT scale the correlation functions are homogeneous functions of time ind hence 
one~can always write arelation like (324). Onejust uses the monotonicity of the correlation 
functions with respect to both times to invert the t i e s  in terms of the correlation functions: 
C I ~  C(t1, tz) = C(t1 - t z )  + tI - tz =~C-’(CIz), then C13 = c(c-’(Clz) + c-’(Czs)) 
and finally J (C~Z) = exp(C-’(C~,)). 

In the second scale X = 0 and the p = 2 long-time dynamic equations are identically 
satisfied without fixing the function J. The most one can say about the correlation functions 
with the formalism used in [I81 and [19] is that an equation like equation (3.24) exists. 

It is interesting to note, however, that in the cases p > 3 the dynamical equations fix 
J to be the identity and then the triangular relation must be a product. They also imply 
C(t ,  t‘) = qh(t’) /h( t )  with h(t)  a monotonic function of time. In the case p = 2, where 
we know the exact solution, this simple scaling clearly does not hold. Instead one has 
something more complicated which, e.g. for T = 0, can be written as 

(3.25) 

with h(t)  = t and j-’(y) = Z,&y”‘/(I + Y)~/’. Only when A - 0 one can write 
C(A) - qA3/‘. Note that J is not analytical at y = 1: dj(y)/dy[,,l + CO. 

3.2. Staggered initial condition 

In this section we shall consider the case where T # 0. When T = 0, if the system starts 
aligned in the direction of one of the eigenvalues of the interaction matrix then it is in a local 
energy minimum of the Hamiltonian and hence the dynamics is frozen. The computation 
of the functions r for the various staggered initial conditions is presented in appendix A.2. 

In the case a = 2, the function r leads to an exponential decay of the energy density 
towards 4. When a # 2 the decay to Ecs is as in the case of uniform initial conditions. 

The staggered magnetization evolves in t h e  as 

. .  

(3.26) 
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Then, at large times 
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(xS&)) stays zero Vt  

M t ) )  + &4) 
(sSo)) - qEAs,(~)e@-*)rt3/4 

stays zero Vt.  

Thus, when the system starts from an initial configuration with a macroscopic condensation 
on the maximum eigenvalue, the averaged staggered magnetization in this direction decays 
from its initial value to the asymptotic (macroscopic) one, with a weight a. Instead, 
when the system starts from different staggered initial conditions, all the averaged staggered 
magnetizations are zero, asymptotically. 

{ 
a # * { bS#&N 

a = 2 *  

The correlation with the initial conditions behaves as 

C(r, 0) - if a = 2. (3.27) 

(3.28) C(t, 0) - - “1‘ 2 - a ( 4 ~ ) ” ~ ( 2 t ) ~ / ‘  if Q # 2. 

Hence, in contrast to the case of uniform initial conditions, the decay of C(t,O) is 
exponential if the system starts condensed on the eigenvalues a # 2, and C(r, 0) tends 
to a constant if a = 2. 

qEA -0- 2/- 
TIPe 

In general for s >> t, >> 1 one finds using equation (A.16) that 

Hence for a # 2 the behaviour of the correlation function in~this time regime exhibits 
explicitly the aging phenomenon. However, if a = 2 the system relaxes inside the 
equilibrium state of size qm. In addition one can show that the full form of the correlation 
function (for sufficiently large l’), starting from the staggered initial condition a = 2, is 
precisely the same as the correlation function for uniform initial conditions restricted to the 
FDT regime (see equation (3.12)). Hence in all large-time regimes it satisfies time translation 
invariance. 

The two-replica overlap at tw = 0, Q(r. s), behaves as 

Q ( T ,  r )  ((EA a 2 
1 (3.31) 
T 

Hence, if the two replicas start from the ‘equilibrium’ initial condition, they evolve until 
they reach a maximum distance of qEA. the size of the equilibrium state. Instead if they start 
from any other staggered initial condition, they just separate completely, Q(r, 5 )  decays 
exponentially with time. 

As far as the response function is concerned, it is easy to see that in the case where 
a # 2 the response behaves exactly as it does for the case of uniform initial conditions (for 
sufficiently large t’). For the case a = 2 one finds 

Q(T,  s) - constant q&-e-2(2-1)‘s3fl a # 2. 

(3.32) 

hence it clearly exhibits time translational invariance and exponential decay for small time 
differences. As was the story for the correlation function, it has for all large t’, the same 
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form as does the response function for uniform initial conditicjns restricted to the FDT regime. 
One may explicitly confirm that FDT is satisfied. 

Thus, any staggered initial condition with a # 2 fails to reach an equilibrium regime. 
The staggered initial condition a = 2 is the only one leading to equilibrium dynamics- 
exponential decays, time-translation invariance. 

Finally, let us mention that using the expression (A.13) derived in appendix A for 
the autocorrelation function one can show that a macroscopic condensation of the initial 
condition at p = 2 is needed to ensure the equilibration of the system. 

4. Temperature variation experiments 

In this section we shall analyse the effects of temperature variations during the total waiting 
time in the asymptotic behaviour of the model. Since we are interested in non-equilibrium 
effects, namely aging effects, we shall let the system evolve from the uniform initial 
conditions of section 3, q(p) = 1, Vp.  

If the system starts at temperature T at t = 0 and the temperature is changed to T +ST 
at a later time t j  then the function r for this scenario is obtained as follows. For t e 5, 
it is given by the constant temperature result, rjYmp(t) = rr(t), as in equation (3.2). For 
t > t j ,  the computation of appendix B gives 

rJump(t) = rr+ST(t) - 26T dt'rr+sr(t - t')Fr(f') 
1 I" 

= r T ( t )  + 2 S T L  dt'rT+ST(t -t')rr(t'). (4.1) 

In order to study this equation it is convenient to separate the 'asymptotic' factor exp(4t) 
(see equation (A.7)) and to define the function y :  

y( t )  exp(-4t)r(t). (4.2) 

rjumP(t) - r,(t)(i + 2 u ( t  - t j )  + o((t - t j ) z ) ) .  

For times t such that t - 5 << 1 

(4.3) 
For times t such that t >> t j  >> 1 equation (4.1) can be approximated: 

I" ~'"'(t) = yr+arO) - 26T dt'm+sr(t - t')vr(t') 

dt' exp(-4f')rr(t') 

For times tj >> 1 and S t  = t - t j  << 1: 

- & T ( t )  + (2 - T ) U 6 t .  (4.5) 
It is therefore clear from above that the energy density is continuous at the temperature jump 
(as one would expect on physical grounds). At first order in 6T the effect of the temperature 
change is linear in ST. Figure 3 shows the energy-density decay at constant temperatures 
T = 0.6 and T = 0.9. The dotted lines correspond to the equilibrium energy densities 



4226 

€7 = -0.7, -0.55, respectively. In addition, the curve corresponding to the temperature 
cycle T -+ T + 6T -+ T with T = 0.6, 6T = 0.3, r,, = 50, twz = 100 is included. The 
effect of positive and negative temperature jumps can be seen-in this curve. At twl the 
first perturbation is applied and the energy density grows to a value above the asymptotic 
energy density in an interval such that t - rw, is short and then starts decaying 
towards the asymptotic value A zoom in the figure would show that the perturbed 
curve for times bigger than r,, is above the asymptotic energy and below the curve 
associated with the relaxation at constant temperature T + 6T. It is an interesting feature 
of this system (and one that may be generic for non-equilibrium systems) that it reaches 
its final asymptotic energy density from above. Irrespective of the early time temperature 
pulse the time-dependent energy density always becomes asymptotic to the energy-density 
decay for a system that has been kept at constant (final) temperature. One can therefore say 
that a positive or negative temperature difference between the initial and final temperatures 
(irrespective of the duration of the pulse) has no effect on the ultimate rate at which the 
system reaches its final energy density. 
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Figure 3. ?le thinner c w e s  correspond to the energy-density decays at constant temperamre 
T = 0.6,O.g. &? = -0.7, -0.55, respectively. The dotted lines describe the WO equilibrium 
energies. The bold line corresponds to &(r) for the process T -, T + ST -+ mT. T = 0.6, 
ST = 0.3, iwl = 50, tw2 = 100. 

For very large times I as compared to rj the relaxation rate behaves as if the time interval 
[O, r j ]  had not occurred: 

Ej""P(t) - E,+&r(t) =E&) + $T. (4.6) 
We now study the decay of the autocorrelation function when fj = tw. In this case, 
equation (2.5) implies 

(4.7) 

where CT is the autocorrelation function at the 'initial' temperature T. The asymptotics 
for the autocorrelation function obtained in section 3 therefore apply to the autocorrelation 
after a temperature jump, if one takes into account the presence of the multiplicative factor. 

(i) Short times after the temperahue jUmpFDT scale. At the beginning of the FDT 
scale t - r, << 1, rj""'P is given by equation (4.3) and 

d u m p ( r ,  t,) - 1 - (T - 26T)(r - rw) + ~ ( ( t  - tW)'). (4.8) 

(4.9) 
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where ~ E A ( T )  is the Edwards-Anderson order parameter associated with temperature T .  
(ii) Large-time differences-aging regime. In the limit of large times t >> t, 

Cj""P(t, f , )  - CT(t, t,) ,/= =~cT(f, t,) ,/=.' 1 - - (4.10) 

It is clear from this expression that a positive (negative) temperature jump ST > O(6T < 0) 
implies a smaller (bigger) correlation function and then a younger (older) system than the 
one associated with the initial temperature. The ST effect is linear at first order in 6 T .  

These results can be seen explicitly in figure 4, where we present a plot of the 
autocorrelation function against r (r = t - tw),  in a log-log scale. for t j  = tw = 300 
at constant temperature T = 0.3,0.6,0.9 and for the temperature jumps T = 0.6 and 
ST = 0, rtO.1, rt0.3. 

0.01 I J 
0.1 L IO LOO I000 I0000 

1 

F i g w  4. Autocorrelation decay in positive and negative temperature jump experiments. Log- 
log plot of C agaiinsr T = t - 2,. t j  = t, = 300 in all rhe curves. The thinner curves 
are associated with constant temperatures T = 0.3,0.6,0.9 from top to bottom. The bold 
C U N ~  carrespond to T = 0.6 and 6T = -0.3, -0.1,0.1.0.3 from lop IO bottom and hence to 
measuring temperaNres 0.3, 0.5, 0.7, 0.9 respectively. 

It is more interesting to compare the decay of the correlation function after the 
temperature jump with that associated with the final temperature T + ST, in the manner 
done in the experiments [4 ,5,7] .  One sees that the curves after the jump get displaced in 
the direction of the older curves if ST < 0 or in the direction of younger curves if ST > 0. 
This result is equivalent to the displacement of the maximum of the logarithmic derivative 
of the magnetization decay observed experimentally [4]. 

Nevertheless, this does not complete the understanding of the landscape of the model. 
The curves above are analogous to the decay from the initial conditions C ( f ,  0) elsewhere 
in the paper but where the initial conditions are those generated by the evolution of the 
system at constant temperature T for a time t,. 

If one performs the temperature jump at t j  and then measures the C(r  +t,, f,) decay for 
t, > tj then the rate of the correlation function decay can be said to depend on an effective 
age tu for the system at the final temperature. One would expect that to % tj01 + (t ,  - tj) 
for some positive value 01. In the case where 01 = 0 then the effective age of the system is 
simply the time spent after the temperature change and hence the system has not benefitted 
from aging at the period [0, t i] .  For r, >> r j  one may verify that CjumP(t, + t, f , )  - 
CrGr(r, + t, t,), i.e. the system has forgotten about the temperature jump. However if 01 

is finite and t, >> t j  then CjumP(f,+z-, t,) - C ~ + 6 ~ ( t j a + ( t , - t j ) + t ,  tj01+(t,-tj)), hence 
this asymptotic analysis is not sufficiently sensitive to reveal the effective age induced by 
waiting at a different temperature. Instead one is forced to consider the intermediate range 
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where tw - O(tj). This computation has been carried out numerically and the results are 
shown in figures 5(a) and 5(b). 
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FigureS. ( a )  NegativcrempenNrcjumpcompwd IoconsIml lcmpenture decays. C(7-rw, r w )  
3gainsl 1 in a log-log scde. For thc lowcr thin CUNC thc lcmpenrurc is constanr, T = 0.6. a d  
lw = 5. For the uppcr Kin  mne thc rempcrarure IS consmi. T = 0.6. md I, = 35: for the 
upper bold curve fI = 30 md 4, = 35, T = 0.9, ST = -0.3. i.e. T = 0.9 - T 6T = 0.6. 
(b )  Positive Iemper3lure jump. C(r + iu, 1-1 3ganrr i in 3 log-log scale. For [he lhin full 
curve fa = 35 m d  T = 0.6. For thc bold c w e  fI = 30 and lu = 35, T = 0.3, 6T = 0.3, i.c. 
T = 0.3 -t T I 6T = 0.6. 

One sees that for 6T -= 0 (see figurc 5@)) the correlation function decay is very close 
to that of CT+sT(f + T, fly), that is (Y zz I and hence the effective age of the system is close 
to I,. In the case 6T > 0 one sees that the correlation decay is actually slower than that 
for the system at fixed temperature, implying that the effecuve age of the system (viewed 
at the final measurement temperature) is, in fact, greater than t ,  and hence (Y > 1. 

It has been observed experimentally in TR\I and out-of-phase susceptibility decays [5] 
that a sample that has waited at a higher temperature (ST < 0)  has an approximate effective 
age I, - tw - rj, that is the period spent at the higher initial temperature does not contribute 
to the effective agc of the system. Figure S(a) shows the correlation decay for such a 
setting. It is apparent from the curves that this model does not capture this feature. The 
lack of chaoticity in the energy landscape of the p = 2 spherical spin-glass means that it 
fails to reproduce this important feature of real spin-glasses. 

The response of h e  model to IemperaNre variation is represented by the results for 
temperature jumps. The model we are considering hcre is not able to describe some of the, 
although controversial, most interesting features of spin-glass physics such as the asymmeuy 
in the response to positive or negative temperature variations. 

One may also show that 

(4.1 1) 

if the temperature jump is applied at the same time tw at which the noise is changed. Thus, 
for large times r >> 1 

5. Conclusions 

In this paper we have examined the dynamics of the p = 2 spherical model. In spite of 
having a very simple energy landscape, with only two equilibrium states and no signature 
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of an exponential number of metastable states, its dynamical behaviour is far from being 
trivial. For almost any initial condition the system never reaches equilibrium, though its 
energy density asymptotically approaches that of equilibrium. Some of the experimental 
observations are reproduced by the time evolution of the autocorrelation function: a slow 
decay towards zero for widely separated times and aging effects represented by an explicit 
dependence on the waiting time. 

However, up to now there have been no experimental results about the autocorrelation 
decay; the measurements have concentrated- on the magnetization decay. For this simple 
model the magnetization depends on tw but it decays too rapidly, with an extra factor P. 
It would be worth studying the effects of magnetic field variations in this solvable model 
WI. 

A similar situation with aging effects in the correlation function and too rapid a decay 
for the magnetization has been obtained for ‘unfrustrated’ systems such as the XY model 
1291. One may argue that the landscapes in which these models relax are far too simple 
and that this is the reason why the response function decays too rapidly. It is interesting to 
note~that again, it has already been noted in [29], the response appears to be more sensitive 
to the precise nature of the landscape than the autocorrelation function. 

The analysis allowed us to check, in every detail, the validity of this model of the weak- 
ergodicity breaking and weak long-term memory (rather too weak in this case) hypotheses. 
The exact results demonstrate that, asymptotically, there are two time regimes. For close 
times compared to t‘, C decays from 1 to qm. TI‘[ is satisfied both by C and G and the 
FDT theorem holds. For well separated times C decays from qEA to 0, and nl and the FDT 
theorem are violated. In the first regime C decays quickly while in the second regime it 
decays slowly. As regards the function X[C] measuring the departure from the FDT theorem, 
one here finds X [ C ]  = 1 if  EA < C < 1 and X[C] = 0, if 0 < C <  EA in good agreement 
with the extension of the results of [18] to the case p = 2. 

In the case of initial conditions leading the system to equilibrium dynamics (Le. 
with initial macroscopic condensation on the eigenvector associated with the maximum 
eigenvalue p = 2) we have been able to calculate the (time translationally invariant) 
autocorrelation and response functions. One finds that, somewhat- surprisingly, these 
functions are identical to the corresponding functions in the FDT regime for initial conditions 
which ultimately lead to the aging phenomenon. It is not at all obvious that this should 
be the case and one is tempted to speculate on the possible generality of this phenomenon. 
This would suggest that the local structure of the energy landscape reproduces itself at 
higher energy levels while the global stmcture has a less trivial form. The decay to the 
final energy (that coincides with the equilibrium energy for this model) is relatively quick, 
after a certain time there is little change in the energy. However, the correlation function 
manages to decay and exhibit aging phenomena presumably due to the zero modes; this 
means that the system travels following predominantly flat directions. 

We have also been able to examine the effects of temperature variations on the behaviour 
of the two-time autocorrelation function for this model. In real experimental situations one 
can assess a sort of effective age of a system that has experienced a temperature variation via 
TRM decay and AC susceptibility measurementst. By analogy to the constant temperature 

t To be more precise. in TRM experiments one can assign an effective age to a system that has undergone a 
negative cycling experiment. This is done by superposing the magnetization decay C U N ~ S  after the cycle with 
a constant temperature decay for a smaller waiting time for all times explored experimentally; thus giving the 
effective waiting time. Neverlheless, this is not possible for positive cyding experiments, for which the decay 
at shon times and at long times are considerably different, and the curves cannot be compared with constant 
temperature decays for any waiting time. See [31 for a mop detailed discussion on this point. 
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case, systems exhibiting a more rapid decay are said to be younger. A similar style analysis 
but using the correlation function to test the effective age has been carried out. Systems 
which have spent time at a higher temperature before switching to the final temperature do 
benefit from aging during time spent at higher temperature at variance with real spin-glass 
experiments where the time spent at higher temperature does not contribute to the effective 
age of the system at the final temperature (if the temperature variation is big enough though 
all the temperatures are, of course, kept below the critical). 

Preliminary investigations would suggest a similar behaviour for the O(N) model 
[30,23,27]. However, in this model one has a notion of space and we hope that a full study 
would allow us to develop an analytic picture of aging phenomena in terms of domain 
growth. Through this analysis we would like to attempt to make a connection between the 
droplet and the mean-field spin-glass models. In one respect the p = 2 spin glass shares a 
property of droplet models. The existence of two well defined ground states (at least at zero 
temperature), parallel to the eigenvector with maximal eigenvalue, implies that the system 
evolves via a competition between these two phases. Indeed, in common with this model, 
droplet models are unable to account for the experimental effects of temperature cycling 
unless the additional hypothesis of chaoticity is added by hand. It would be interesting 
to explicitly see how a complete 'aging' situation is settled when the parameter p ,  in the 
definition of the general p-spin spherical model, is raised from p = 2 to a larger value 
[31,18]. The solution we have presented here for the p = 2 model, is the exact solution 
of the full mean-field dynamical equations of [18] when p = 2. Hence, it can be used as 
the unperturbed solution in a perturbative analysis of those equations around p = 2. These 
final topics are currently under investigation [27]. 
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Appendix A. 

We here solve equation (2.7) at constant temperature T for r; we shall assume that we are in 
the region T < T, (T, = 1)-we shall a posteriori see that this guarantees the convergence 
of the expansions we use. The Laplace transform of r is given by 

where ~ ( p )  Taking the inverse transform 
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and re-summing the series 

1 1 
+2T s dAp(A)eu‘ /dpp(p)v(p)2(A-p)(1 - T X ( A ) ) ~  64.3) 

where 

x ( p ) =  PP dA- J 64.4) 

and PP indicates the Cauchy principal value. The initial condition si(O)--or its ‘staggered’ 
distribution q(p) = (s,(O))*-determines the time behaviour of r and, in particular, its 
asymptotic behaviour. 

If the interaction matrix J belongs to the Gaussian ensemble, the density of its 
eigenvalues is given by equation (2.8). For long times f the integrals over p are dominated 
by the maximum eigenvalue p = 2. Then, x ( 2 )  = 1 and 

Appendix A.1. p-unifonn initial conditions 

If n ( 0 )  = 1, Vp, equation (A.l) gives 

1 m  Tk. r ( f )  = r k- 
2t k=O 

For T < T, = 1. I, are the generalized Bessel functions. Its~asymptotic behaviour is 
1 1 e4‘ r(t) - - & (1 - T ) z  (2f)a/z’ 

Appendix A.2. Staggered initial condition 

If s,(O) =&,a one obtains 

and 

(-4.7) 

For long times the second term can be approximated. If Jij is in the Gaussian ensemble, 
the saddlepoint method implies 

T 4  f i  e-&t 1 
2 - a  + E  (1 - TX(2 - €))2’ 

+ -e4’ 1 de 
1 r ( t )  - ekl 

1 - T x ( a )  x (A.10) 

I f a = 2  

(A.ll) 
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I f a # 2  

(A.12) 

Appendix A.3. Computing the correlation function 

Once we have solved for r(r) we are left with the problem of computing the correlation 
function for non-zero waiting times tw. In order to do this we must calculate the term 

W ( t ,  tw) = ltw dtr(r)((ep(z+~-2r) )). (A.13) 

Taking the Laplace transform with respect to r, yields 

and using equation (A.l) yields 

@ ( t , S )  = ((*))((L))/* s-22p s-22p -2+) s -zp  

(A.14) 

(A.15) 

We now proceed as before, expanding the denominator then inverting the Laplace transform 
to obtain 

(A.16) 

this form is convenient for obtaining the relevant asymptotics in the case t > tw. 

Appendix E. 

In this appendix we compute the function r(t)  for general cyclic variations of the 
temperature. We start by obtaining the result for the single temperature jump case: 
u t )  = TW - t )  + (T + w e ( t  - t , ) .  

Let us define the function f ( t ) :  

f ( r )  3 ((e2")) = /dpp(p.)e". (B.1) 

Starting from a uniform initial condition equation (2.7) implies, for the single temperature 
jump experiment, 

r I -jump df 'f(t  - t ' )I '[o~,](f ' )  + 2(T + ST) df' f ( t  - t')rp,,w~(f') 

(B.2) 
s 
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Solving the Laplace-transformed equation yields 

- 
. ' ~' (B.5) i 0  - z ~ ~ f ( s ) ~ ~ o , r t ~ ( s )  

1 - 2(T + S T ) f ( s )  1 - 2(T + S T ) J ( s )  
r(s) = 

and taking the inverse transform gives 

This solution should clearly yield ri""'p(t). = r,(t) for f < 4 .  This may be~verified by 
noting that formally 

rr = ( I  +zTf)-'f (B.7) 
where the products in the above expression are to be taken as the~convolution of functions. 
Substituting this form for IIr+aT into equation 13.6) yields the desired result. 

For completeness sake we mention that with a similar argument one can obtain the 
function r associated to n temperature jumps 

n 

u t )  = Cz-le(t - ti-l)e(ti - t )  + T,e(t - tn).  (B.8) 
i=l 

It is given by 

In particular, if II = 2, TO = Tz = T, TI = T + ST and t > tz ,we obtain the one cycle case: 
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